metabelian, supersoluble, monomial, A-group
Aliases: C6.22S32, C33⋊9(C2×C4), C3⋊S3⋊2Dic3, C3⋊Dic3⋊5S3, C32⋊8(C4×S3), C3⋊2(S3×Dic3), (C3×C6).35D6, C3⋊2(C6.D6), C32⋊6(C2×Dic3), C2.1(C32⋊4D6), (C32×C6).13C22, (C3×C3⋊S3)⋊4C4, (C2×C3⋊S3).2S3, (C6×C3⋊S3).3C2, (C3×C3⋊Dic3)⋊6C2, SmallGroup(216,131)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C33⋊9(C2×C4) |
Generators and relations for C33⋊9(C2×C4)
G = < a,b,c,d,e | a3=b3=c3=d2=e4=1, ab=ba, ac=ca, dad=eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, dcd=c-1, ce=ec, de=ed >
Subgroups: 340 in 90 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C33, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, C3×C3⋊Dic3, C6×C3⋊S3, C33⋊9(C2×C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C4×S3, C2×Dic3, S32, S3×Dic3, C6.D6, C32⋊4D6, C33⋊9(C2×C4)
Character table of C33⋊9(C2×C4)
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -2 | 0 | 0 | -2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | -2 | -2 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2i | 0 | 0 | -2i | -2 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | i | 0 | -i | complex lifted from C4×S3 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 2i | -2i | 0 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | i | 0 | -i | 0 | complex lifted from C4×S3 |
ρ19 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -2i | 0 | 0 | 2i | -2 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | -i | 0 | i | complex lifted from C4×S3 |
ρ20 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | -2i | 2i | 0 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | -i | 0 | i | 0 | complex lifted from C4×S3 |
ρ21 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 4 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | 4 | 0 | 0 | -2 | -2 | 4 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ23 | 4 | -4 | 0 | 0 | -2 | -2 | 4 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.D6 |
ρ24 | 4 | 4 | 0 | 0 | -2 | 4 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ25 | 4 | -4 | 0 | 0 | -2 | 4 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Dic3, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -4 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Dic3, Schur index 2 |
ρ27 | 4 | 4 | 0 | 0 | -2 | -2 | -2 | 1 | -1-3√-3/2 | 1 | 1 | -1+3√-3/2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ28 | 4 | -4 | 0 | 0 | -2 | -2 | -2 | 1 | -1-3√-3/2 | 1 | 1 | -1+3√-3/2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | 1-3√-3/2 | 1+3√-3/2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | -2 | -2 | -2 | 1 | -1+3√-3/2 | 1 | 1 | -1-3√-3/2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | 1+3√-3/2 | 1-3√-3/2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | 4 | 0 | 0 | -2 | -2 | -2 | 1 | -1+3√-3/2 | 1 | 1 | -1-3√-3/2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
(1 16 17)(2 18 13)(3 14 19)(4 20 15)(5 10 23)(6 24 11)(7 12 21)(8 22 9)
(1 16 17)(2 18 13)(3 14 19)(4 20 15)(5 23 10)(6 11 24)(7 21 12)(8 9 22)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,23,10)(6,11,24)(7,21,12)(8,9,22), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,23,10)(6,11,24)(7,21,12)(8,9,22), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,16,17),(2,18,13),(3,14,19),(4,20,15),(5,10,23),(6,24,11),(7,12,21),(8,22,9)], [(1,16,17),(2,18,13),(3,14,19),(4,20,15),(5,23,10),(6,11,24),(7,21,12),(8,9,22)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,549);
C33⋊9(C2×C4) is a maximal subgroup of
S32⋊Dic3 C33⋊C4⋊C4 (C3×C6).8D12 (C3×C6).9D12 S32×Dic3 S3×C6.D6 D6⋊4S32 C33⋊5(C2×Q8) D6.4S32 D6.3S32 C3⋊S3⋊4Dic6 C12⋊S3⋊12S3 C4×C32⋊4D6 C62.96D6 C62⋊24D6
C33⋊9(C2×C4) is a maximal quotient of
C12.93S32 C33⋊10M4(2) C33⋊6C42 C62.84D6 C62.85D6
Matrix representation of C33⋊9(C2×C4) ►in GL4(𝔽7) generated by
5 | 3 | 2 | 3 |
1 | 3 | 3 | 0 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 4 |
3 | 1 | 4 | 5 |
1 | 3 | 3 | 5 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 2 |
6 | 2 | 5 | 1 |
0 | 4 | 0 | 5 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 2 |
0 | 5 | 2 | 6 |
2 | 0 | 2 | 1 |
3 | 3 | 0 | 1 |
1 | 6 | 3 | 0 |
1 | 3 | 5 | 1 |
6 | 2 | 6 | 6 |
1 | 6 | 3 | 3 |
3 | 3 | 4 | 1 |
G:=sub<GL(4,GF(7))| [5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,1,0,0,1,3,0,0,4,3,4,0,5,5,0,2],[6,0,4,0,2,4,4,0,5,0,0,0,1,5,6,2],[0,2,3,1,5,0,3,6,2,2,0,3,6,1,1,0],[1,6,1,3,3,2,6,3,5,6,3,4,1,6,3,1] >;
C33⋊9(C2×C4) in GAP, Magma, Sage, TeX
C_3^3\rtimes_9(C_2\times C_4)
% in TeX
G:=Group("C3^3:9(C2xC4)");
// GroupNames label
G:=SmallGroup(216,131);
// by ID
G=gap.SmallGroup(216,131);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,31,387,201,730,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^2=e^4=1,a*b=b*a,a*c=c*a,d*a*d=e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d=c^-1,c*e=e*c,d*e=e*d>;
// generators/relations
Export